Some Upper Matrix Bounds for the Solution of the Continuous Algebraic Riccati Matrix Equation
نویسندگان
چکیده
In this paper, new upper matrix bounds for the solution of the continuous algebraic Riccati equation (CARE) are derived. Following the derivation of each bound, iterative algorithms are developed for obtaining sharper solution estimates. These bounds improve the restriction of the results proposed in a previous paper, and are more general. The proposed bounds are always calculated if the stabilizing solution of the CARE exists. Finally, numerical examples are given to demonstrate the effectiveness of the present schemes.
منابع مشابه
Analytical and Verified Numerical Results Concerning Interval Continuous-time Algebraic Riccati Equations
This paper focuses on studying the interval continuous-time algebraic Riccati equation A∗X + XA + Q − XGX = 0, both from the theoretical aspects and the computational ones. In theoretical parts, we show that Shary’s results for interval linear systems can only be partially generalized to this interval Riccati matrix equation. We then derive an efficient technique for enclosing the united stable...
متن کاملNew lower solution bounds for the continuous algebraic Riccati equation
In this paper, by constructing the equivalent form of the continuous algebraic Riccati equation (CARE) and applying some matrix inequalities, a new lower bounds solution of the CARE is proposed. Finally, corresponding numerical examples are provided to illustrate the effectiveness of the results.
متن کاملEla New Lower Solution Bounds for the Continuous Algebraic Riccati Equation
In this paper, by constructing the equivalent form of the continuous algebraic Riccati equation (CARE) and applying some matrix inequalities, a new lower bounds solution of the CARE is proposed. Finally, corresponding numerical examples are provided to illustrate the effectiveness of the results.
متن کاملApplication of fractional-order Bernoulli functions for solving fractional Riccati differential equation
In this paper, a new numerical method for solving the fractional Riccati differential equation is presented. The fractional derivatives are described in the Caputo sense. The method is based upon fractional-order Bernoulli functions approximations. First, the fractional-order Bernoulli functions and their properties are presented. Then, an operational matrix of fractional order integration...
متن کاملMatrix Bounds for the Solution of the Continuous Algebraic Riccati Equation
Juan Zhang and Jianzhou Liu Department of Mathematics and Computational Science, Xiangtan University, Xiangtan, Hunan 411105, China Correspondence should be addressed to Jianzhou Liu, [email protected] Received 19 December 2009; Revised 22 June 2010; Accepted 16 August 2010 Academic Editor: John Burns Copyright q 2010 J. Zhang and J. Liu. This is an open access article distributed under the Crea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Applied Mathematics
دوره 2013 شماره
صفحات -
تاریخ انتشار 2013